
N94- 35439

IMPACTS OF OBJECT-ORIENTED TECHNOLOGIES:
SEVEN YEARS OF SEL STUDIES

Mike Stark

SOFTWARE ENGINEERING BRANCH

Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

(301) 286-5048

/

o5

P.Y

ABSTRACT

This paper examines the premise that object-oriented technology (OOT) is the most

significant technology ever examined by the Software Engineering Laboratory. The

evolution of the use of OOT in the Software Engineering Laboratory (SEL) "Experience

Factory" is described in terms of the SEL's original expectations, focusing on how
successive generations of projects have used OOT. General conclusions are drawn on how

the usage of the technology has evolved in this environment.

INTRODUCTION

The Software Engineering Laboratory (SEL) spon-

sored by the National Aeronautics and Space

Administration/ Goddard Space Flight Center

(NASA/GSFC), has three primary organizational

members: the Software Engineering Branch of
NASA/GSFC, the Department of Computer Sci-

ence of the University of Maryland, and the

Software Engineering Operation of Computer
Sciences Corporation. It was created in 1976 to

investigate the effectiveness of software engineer-

ing technologies applied to the development of
applications software. As it seeks to understand the

software development process in the GSFC envi-
ronment, the SEL measures the effects of various

methodologies, tools, and models against a baseline

derived from current development practices.

In the SEL production environment, the language
usage is approximately 70 percent FORTRAN,

15 percent Ada, and 15 percent C. This is in contrast
to the almost 100-percent FORTRAN environment

in 1985. Projects typically last between two and
four years, and they range in size from I00,000 to

300,000 source lines of code (SLOC). A typical

project consists of between 20 percent and 30 per-
cent code reused from previous projects.

The SEL has examined many technologies, some of

which have major effects on how software is

developed in the SEL production environment,

where ground-support software is produced for the

Flight Dynamics Division (FDD) at Goddard

Spaceflight Center (GSFC). One technology,

Object-Oriented Technology (OOT), has attracted

special notice in recent years, causing Frank

McGarry, head of Goddard's Software Engineering

10014023L 4-3

PI_8,tBI¢_ ImAP,[I_LANK NOT FIL_EO

Branch, to remark a year ago that "Object-Oriented

Technology may be the most influential method

studied by the SEL to date" (Reference 1).

THE EXPECTATIONS AND
REALITY OF OOT

The development of highly reusable software is one

of the promises of OOT. The initial expectation for
OOT was that this increased reuse would yield

benefits in the cost and the reliability of software

products. In addition, it was expected that OOT
would be more intuitive than the structured devel-

opment traditionally used in this environment,

making the development process more efficient.
Therefore, the SEL expected that, in addition to the
reuse benefits, the cost of developing new code

would also decrease.

The specific measures applied to assess the effect of
OOT include cost in hours per thousand source lines

of code (KSLOC), reliability by measuring errors

per KSLOC, and the duration of the project in
months. To date, OOT has been applied on eleven

projects in the SEE These projects can be grouped

into three families of completed projects and an

ongoing effort to develop generalized flight dynam-

ics application software.

The completed projects (Figure 1) include three

early Ada simulators built between 1985 and 1988,
as well as three FORTRAN ground-support sys-

tems developed from the Multimission Three-Axis

Attitude Support System (MTASS) and four telem-

etry simulators developed from multimission simu-
lator code, all of which multimission applications

were developed between 1988 and 1991.

During the seven years the SEL has been experi-

menting with OOT, developers have gained more

understanding of which object-oriented concepts

are most applicable in the FDD environment. The

most important part of the evolution is the applica-

tion of object-oriented concepts to a greater portion

of the development life cycle over time. The
knowledge gained during the development of these

three families of systems is being applied in the

development of generalized flight dynamics ap-

plications.

Despite its later appearance chronologically, the
MTASS family of systems (Figure 2) should be

GRODY m [

GOADA

GOESIM

UARSAGSS

UARSTEI.S
u

EUVEAGSS

EUVETELS

EUVEDSIM

SAMPEXAGSS

SAMPEXTS

POWITS

0

Figure 1.

Mrrl

_'L

-m L

lO_ L

tab'nI.

,no_L_

] lO/Im

I,ugo

_j r/N

] I=UN

i i J 'J i
10 20 30 40 50

]Mm

] |n)O

Jsm

[-'-_'] •_11

_oL Jem

I I I I

60 70 80 90

DURATION - MONTHS

Projects Using Object-Oriented Technology

IO0

10014023L 4-4

High level deslgn

TeWry r--"

I Ad)u_ E_lmote

Figure 2. MTASS Design

examined first because it represents a modest

infusion of OOT. MTASS started with a ground-

support system that was developed as a common

system for two different satellites, the Upper

Atmosphere Research Satellite (UARS) and the
Extreme UltraViolet Explorer (EUVE) satellite. It

was then reused for the Solar, Anomalous, and

Magnetosphere Particle Explorer (SAMPEX).

All ground-support systems read in telemetry and

produce attitude (spacecraft orientation) estimates.

The difference is that, where previous systems had

stored all sensor data in one f'de specifically

designed for the mission, MTASS developed
separate interface routines and file formats for each

kind of sensor. Only one mission-specific, front-

end telemetry processor had to be developed for
each new mission.

This basic grouping of data and of operations on the

data is the most important object-oriented concept

in the FDD environment. This change alone

increased code reuse from the baseline 20 percent to
30 percent to around 75 percent or 80 percent.

It should be emphasized that the use of OOT on

these projects was modest. The implementation
language is FORTRAN, and the standard structured

design notation was used to document the system.

The object-orientation of the sensor model design
was recognized during coding rather than con-

sciously planned during design. Nonetheless, this

one simple concept has had tremendous benefit in

developing ground-support software faster and at a
lower cost.

The earliest purposeful use of object-orientation in
the SEL environment was associated with the

introduction of Ada in 1985. The first Ada project,

the Gamma Ray Observatory (GRO) Dynamics

Simulator in Ada (GRODY), was developed as an

experiment in parallel with an operational

FORTRAN simulator. Previous Ada experiments
(Reference 2) had produced designs and code that

looked like Ada versions of FORTRAN systems.
To avoid this, the GRODY team was trained in a

variety of design methods, including Booch's
Object-Oriented Design (OOD) method (Reference

3), stepwise refinement, and process abstraction. In
addition, one of the team members had an academic

background in OOD.

OOD emerged as a clear favorite, but in early 1985

Booch's method was not mature enough to support
large production projects. Stark and Seidewitz

developed the General Object-Oriented Design

(GOOD) method during the GRODY project to

meet these needs (Reference 4). Its first application

was on the Geostationary Operational Environmen-
tal Satellite (GOES) Dynamics Simulator in Ada

(GOAl)A), a project started in 1987. The GOES

Telemetry Simulator (GOESIM) was also imple-

mented in Ada. GOESIM was developed using

structured design techniques, although GRODY

packages designed with an object-oriented

approach were reused on GOESIM.

The goal of the early Ada simulation projects was to

learn the appropriate use of the Ada language, with

a view towards increasing software reuse. Other

goals were considered less important. The GRODY

team, for example, was specifically instructed not

10014023L 4-5

to worry about the real-time requirement being

imposed on the FORTRAN simulator, and in fact
GOADA was able to achieve higher than usual

reuse from GRODY code. However, the lack of

attention to performance led to systems with

disappointing performance.

The SEL responded to this issue by studying the

performance of the GOADA simulator in detail to
determine if the performance problems were caused

by the Ada language, the OOD concept, or by the
GOADA design itself. The studies estimated the

effect of various improvements on the execution

speed of a simulation. These improvements

included changes such as removing repeated inver-
sion of the same matrix from an integrators

derivative function or simplifying the internal data

structure of an objects state. The inefficiencies were
not caused by the use of object oriented technolo-

gies, and improving the performance with these
corrections would not compromise the object-ori-

ented design. Figure 3 shows that making all these

changes to the full simulator would improve

performance to the levels attained by similar
FORTRAN simulators.

The next generation of projects is a multimission

telemetry simulation architecture, built around Ada

generic packages. Figure 4 shows how two sensor
models use a generic sensor package for common
functions such as writing reports and simulated data

files. Here, each sensor has its own specific

modeling procedure that is used to instantiate the

generic. In addition, these model procedures are
built around other generics that provide common

functionality such as modeling sensor failures or

digitizing simulated sensor data. The arrows indi-

cate dependencies between software modules. For

example, the Gyro object depends on procedure

Gyro_Model to provide gyro specific functionality,
and it instantiates the Generic Sensor package to

provide more general sensor capabilities. One of the
interesting consequences of the extensive use of

generics is that the system size decreased; the

previous generation of Ada telemetry simulator
contained 92 KSLOC, but this multimission simu-

lator contains only 69 KSLOC.

This architecture was the first simulator designed to
facilitate reuse from mission to mission. Unlike the

MTASS system, this simulator does not need a

mission-specific subsystem to handle telemetry;

the telemetry formats can be set by run-time

parameters. When this strategy is used appropri-

ately, the reuse levels approach 90 percent verbatim
code reuse' with the remaining part undergoing

minor modifications.

While this 90-percent reuse level has helped reduce
software costs and shorten development schedules,

it has only done so on a limited class of systems.

When the telemetry simulator was reused for a new

class of systems (spin-stabilized spacecraft), the

system complexity increased, reuse decreased, and

run-time performance suffered. MTASS had a

similar problem when it was applied to a spacecraft
that did not have a sensor on which the original

MTASS design depended.

In addition to variations between spacecraft, simu-

lators and ground systems contain many common
models. However, the current practice is to create

separate systems from separate specifications. The

way to account for variations between satellites and

to exploit commonality between software systems

is to perform domain analysis, rather than attempt-

ing to generalize the specification of a single
satellite's simulator and ground-support system.

In the FDD, this domain analysis is being done as

part of a generalized system development initiative.

The attempt to develop generalized software to

support multiple flight dynamics applications was

based on the experiences of the projects described
above. The multimission simulators demonstrated

the feasibility of generic architectures, and it had
been demonstrated that applying the object-

oriented concepts of abstraction and encapsulation
was sufficient to increase reuse dramatically. Final-

ly, the existing designs were highly reusable, but
had severe limitations in the areas of adaptability

and run-time efficiency.

The key concepts selected for generalized system

development in the FDD are to perform object-ori-
ented domain analysis, and to have a standard

implementation approach for the generalized
models. Figure 5 shows a typical diagram from the

generalized specifications.

The boxes are generalized superclasses with their
subclasses listed inside; Gyro, Sun Sensor, and Star

- 10014023L 4-6

11:00

CPU time for 20.-minute
slmulaUon (GOADA)
(VAX 8820 CPU minutes)

0

!_ Estimates

IR FORTRAN examples

Figure 3. Impact of Performance Goals

Sensor

Io,o, ,o-, f,uoIModel I J Sensor t Sensor, I I Model
| , _.______ J

Figure 4. Multimission Telemetry Simulator Design

10014023L 4-7

iGym
Sun SeMor
S_m' Cammm

EsilmMee

Bitch _ _FJamS

Kalman IIHef

Figure 5. Generalized System Specifications

Camera, for example, are subclasses of Sensor. The
arrows between categories represent dependencies

between classes. For example, estimators depend

on Sensor for measurements and Dynamics for state

propagation. These dependencies are matched in

the implementation with Ada generic formal

parameters. The classes themselves are imple-
mented as abstract data types in Ada packages. Each
class shown on the diagram has a corresponding

text specification that defines the member func-

tions, user parameters, state data, and dependencies
on other classes and categories. Categories also

have text specifications for an abstract interface

containing the functions common to all classes in

the category. With this generalized development

effort, object-oriented domain analysis and stan-
dard implementation, as well as other features of the

object-oriented paradigm, are now being applied to

the entire software life cycle.

With the successive generations of object-oriented

development efforts defined, the next step is to
examine how the SEL's approach has changed

between 1985 and 1992. The approach has evolved

in what concepts are used, when they are used in the

life cycle, and how they are taught.

The concepts of data abstraction and encapsulation,
used from the beginning, have themselves enabled

the high reuse observed on the MTASS system;
even the second Ada simulator attained higher reuse

than is typical for similar FORTRAN simulators.
The multimission telemetry simulator introduced

the idea of inheritance by taking a general model for

sensors and tailoring this model for each type of

sensor. It also introduced the idea of parameterizing

dependencies with Ada generic formal parameters.

The generalized application work added the use of

abstract data types, where previous systems had

implemented objects as state machines. The gen-

eralized systems also have a superclasstsubclass

hierarchy limited to superclasses (called "Catego-

ries") and one level of subclasses for each super-

class. Dynamic binding is coded using Ada case

statements, not an object-oriented programming

language feature.

Having support for object-oriented programming in

Ada would remove the need to write this code,

which would reduce development costs. However,

the simple data abstractions provided by Ada

packages have already increased reuse levels from

approximately 40 to approximately 90 per cent of
the delivered code, so the remaining potential cost

reductions are dominated by those already attained.

Dynamic binding would reduce the tedium of

implementing case statements to handle run-time

dispatching, but it is not the most important

characteristic of object-oriented programming lan-

guages from a project cost point of view.

In addition to the increased reuse, the evolution to

object-oriented development affected the reliability

and changeability of the system. Table 1 shows the

effort needed to determine what change is necessary

to correct an error or to otherwise enhance a system.

10014023L 4-8

Table 1. Changes Needed to Correct
Errors or Enhance System

Project

GOESIM

UARSTELS

SAMPEXTS

Effort to Isolate Changes

1 hr- 1 day-
< 1 hr 1 day 3 day • 3 day Total

116 102 27 7 262

205 77 10 5 297

8 7 0 0 15

These data are shown for three telemetry simula-

tors. GOESIM is an early Ada project whose design

is similar to previous FORTRAN projects.
UARSTELS is the first simulator in the

multimission telemetry simulator family, and
SAMPEXTS is a simulator that reuses from

UARSTELS. The second-generation systems have

a far greater proportion of changes that take less

than one hour to isolate. These results support the

claim that object-oriented designs produce systems

that are more easily modified because of the

information hiding provided by objects and classes.

The types of errors that occur also changed over
time. Table 2 shows the classification of errors for

the same three systems described above.

These data show that the development of UARS-
TELS, the initial second-generation system, was

slightly more error prone than other projects. While
overall errors were increasing, though, errors

relating to interfaces and data structures were

substantially reduced. Again, this is consistent with

the perceived benefits of abstraction and informa-

tion hiding. Even more striking is the complete

elimination of interface errors for high-reuse proj-
ects such as SAMPEXTS.

The other notable change is in how OOT affected

the development process. In the MTASS System, it

had minimal impact, as the design approach was
structured, with the object orientation being recog-

nized during coding. Both generations of simula-

tors used object-oriented design and object-based

coding based on Ada packages; the generalized

system project added an object-oriented approach

to defining specifications. It is anticipated that
having an object-oriented view throughout the life

cycle will make the use of the technology easier by

removing the need to recast functional specifica-

tions into an object-oriented design.

While object-oriented analysis has not been used

for most systems, the high-reuse architectures have

been influenced by how the specifications are

written. Typical specifications have focused on a

single satellite mission, and they specify the

simulation and ground-support software separately.

The building of the high-reuse MTASS and teleme-

try simulator systems was possible because the

flight dynamics analysts wrote a single specifica-
tion for the UARS and EUVE missions; the

simulator and ground-support systems were still

specified separately. The limitations of these speci-

fications is one factor that led to a domain-analysis
approach, so that a wider range of satellites can be

supported and commonality between ground sup-

port and simulation can be exploited. The domain-

analysis team switched from a structured to an

object-oriented approach as they attempted to write

a generalized specification.

Because the generalized system development is still
in design, the impact of object-oriented analysis

cannot yet be measured. But the use of object-ori-

ented design has changed the development process

by shifting work to the design phase. This is due to

the high reuse allowing the production of an initial

build by integrating existing components.

SAMPEXTS thus demonstrated a system that met a
large proportion of the requirements at the Critical

Design Review. Table 3 shows the distribution of

developer effort over the main phases of a develop-

ment project.

10014023L 4-9

Table 2. Classification of Errors

Data Startup

GOESIM 52 21

UARSTELS 25 40

SAMPEXTS 0 4

Error Class

Computational Logic ExternalInterface

10

43

3

Table 3. Developer Effort Over Main
Development Phases

Effort Distribution by Phase

Project Design Code Test

GOESIM 29% 44% 27%

UARSTELS 25% 39% 36%

SAMPEXTS 48% 18% 34%

The SEL provided training in Ada and design

techniques for the early Ada simulator experiments,
but not for the later multirnission simulators. The

MTASS FORTRAN system involved no training in

OOT, as the project did not set out to use a new

language or design technology. The subjective

experience of the SEL has been that the application
of OOT was not so intuitive as expected, as

functional decomposition has been successfully

applied for more than 15 years. The SEL, recogniz-

ing that transition to a new technology must factor

in the time required to learn the new way of

thinking, is creating a new training program that

captures the lessons learned on previous projects
and describes the overall object-oriented software

development process as well as specific language
and design concepts.

The goal of bringing new technology into the SEL

is to measurably improve the software development

process. Figure 6 shows the project characteristics
of the three multimission simulator projects.

The UARSTELS project was developed to be
reused for future simulators, and the projects

labeled EUVETELS and SAMPEXTS represent

the first two projects to reuse this architecture.
Costs were reduced by a factor of 3, change and

error rates were reduced by a factor of 10, and

Internal
Interface Initialization

21

Total

3
T

10 13 127

9 3 39 153

0 0 10

project cycle time was cut roughly in half. However,
we have already shown that when an attempt was
made to reuse this architecture for a different class

of projects there were difficulties adapting the code,
and run-time performance was unsatisfactory.

The generalized system effort is attempting to gain
the benefits shown for this single family of projects

over a wider variety of flight dynamics applica-

tions. This will allow the FDD to support more

missions simultaneously, and it will free resources

to concentrate on improving existing capabilities or

defining new ones.

SOME CONCLUSIONS

This paper addresses the question, "Is Object-Ori-
ented Technology, then, truly the most influential

method studied by the SEL to date?" The conclu-

sion of the SEL is that OOT does promote reuse,

sometimes even neglecting other important issues

like run-time efficiency. When coupled with

domain analysis, OOT enables high reuse across a

range of applications in a given environment. While

the reuse expectations were met, the use of OOT
was not so intuitive as expected, partly because the

technique was new to an organization with a mature

structured development process. The other factor
affecting the ease of transition is the inherent and

growing complexity of flight-dynamics problems;

OOT may be a better process but, in addition to

software techniques, skilled designers are still

needed to solve difficult problems.

Still, few (if any) of the other technologies studied

here have effects so widespread or so profound as

OOT. In fact, OOT is the first technology that

covers the entire development life cycle in the FDD.

It is an entirely new problem-solving paradigm, not

simply a new way of performing familiar tasks in a

traditional life cycle. It has been demonstrated to

10014023L 4-10

2OO
180
160
140

HOURS/ 12o

KSLOC 1_o

6o
40
20
o

EFFORT
5.0
4.5
4.0
3.5

• OF CRF'S/ 3.o
KSLOC _,t

2.0
1.5
1.o
u
0.0

CHANGE AND ERROR RATES

-- ERROR RAT_ -I- CHANGE I_nm J

10o
gO
gO
7O
6O

WEEKS so

40
so
20
lo
o

PROJECT DURATION

Figure 6. Project Characteristics, Multimission Simulators

expand the reusability and reconfigurability of

software, with resultant improvements in produc-

tivity and development cycle time. In this sense,

OOT is arguably the most influential technology
studied by the SEL.

. Basili, Victor R., and Katz, Elizabeth E.,

"Software Development in Ada," Proceedings

of the Ninth Annual Software Engineering

Workshop, Greenbelt, MD, November 1984,

pp. 65-85.

I.

REFERENCES

McGarry, Frank E., and Waligora, Sharon,

"Recent Experiments in the SEL," Proceed-

ings of the Sixteenth Annual Software Engi-

neering Workshop, Greenbelt, MD, December
1991, pp. 77-85.

3. Booch, Grady, Software Engineering With Ada

(First Edition), Benjamin/Cummings, Menlo
Park, CA, 1983.

. Seidewitz, E., and Stark, M., General Object-

Oriented Software Development, SEL-86-002,

August 1986.

10014023L 4-1 1

